Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(13): eadj8898, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536930

ABSTRACT

Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.

2.
Nature ; 605(7909): 248-250, 2022 05.
Article in English | MEDLINE | ID: mdl-35546192

ABSTRACT

Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which leads to a rapid expansion of the envelope and the ejection of most of its mass1,2. Theory has predicted the existence of a 'fireball' phase following directly on from the runaway fusion, which should be observable as a short, bright and soft X-ray flash before the nova becomes visible in the optical3-5. Here we report observations of a bright and soft X-ray flash associated with the classical Galactic nova YZ Reticuli 11 h before its 9 mag optical brightening. No X-ray source was detected 4 h before and after the event, constraining the duration of the flash to shorter than 8 h. In agreement with theoretical predictions4,6-8, the source's spectral shape is consistent with a black-body of 3.27+0.11-0.33 × 105 K (28.2+0.9-2.8 eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf.

SELECTION OF CITATIONS
SEARCH DETAIL
...